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Abstract—The classical zero-shifting technique is generalized to —t 2 3 AT
cover extraction of complex transmission zeros (TZs) in the form A _,f-\ _,:LL _[H
of fourth-order LC sections whereby thejw- and c-axis TZs ap- %) ‘H_f ‘El_? 'Er? 'Erf
pear as special cases. Using this approach, bandpass filters can be T

synthesized in direct coupled resonator forms by pole placementin-

stead of designing them through low-pass prototypes. By using cir- .|I|—@—|:»——<D-®-( 3 {4 el 5 e 6 It
cuit transformations, the resulting direct coupled resonator filter ’
circuits can then be transformed into a variety of cross-coupled ()

forms like a fully cross-coupled form or cascadedV -tuplet form.
Itis shown that one or more finite jw-axis, cc-axis, or complex TZs
can be extracted as direct coupled resonator circuit blocks, which %}T

can be converted into cross-coupled triplets, quadruplets, or other J}‘ L%—I _ET % L()JJ}‘\ LmJ % }_l?
NN -tuplets of resonators. In particular, it is shown that a cascaded

quadruplet section can be used to realize a complex TZ quadruplet
s; = o; + jw;, as well as two pairs ofjw-axis TZs, s; = tjw;,,
and S = :I:]wk

Index Terms—Cross-coupled, filters, linear phase, synthesis. \
S D

I. INTRODUCTION symmetric response asymmetric response
(¢

Jwi- asus FTZ - a<|s FTZ complex Tz

ASCADE synthesis for direct design of filters by place-
ment of transmission zeros (TZs) is a well-established Tidﬁt E‘i a_\tN complex TZ's
technique. Especially for bandpass filters, compared to design L LS N -

techniques involving frequency transformations from low-pass ? 14
prototypes, this technique has advantages of involving no ap- J)-‘R . )
proximations and having maximum flexibility for shaping both (2 (s )"Q’ [10)'(13)

the amplitude and phase response of filters by adjusting locations / septuplet
of TZs [1]-[3]. In this paper, the cascade synthesis technique L'm bm =) biock
will be generalized to cover the direct bandpass design of (d)

cross-coupled resonator filters by placement of TZs. In the new
approach, the cross-coupled filters will be treated as extensions
of direct-coupled resonator filters, which are shown in Fig. 1(a)
in a shunt.C resonator form with simplé- or C-type coupling
elements. In the simplified schematics, the shunt resonators will
be shown as circles and coupling elements as heavy lines. They o e o &
can be designed through cascade synthesis by placement of TZs b 5
only ats = 0 ands = oo. However, such structures cannot
meet the extreme selectivity, flat delay, and miniaturization 0]
requirements of modern applications. Restrictions on both —_
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the amplitude and phase responses necessitate placement of Il. FORMULATION OF TRANSFER FUNCTION AND
finite jw-axis and/or complex TZs, which lead to impractical ELEMENT EXTRACTION

poupling elements when synthesized in cascade fqrm, as S.ho"\”ilransducer power gain of a passive lossless reciprocal two-
in Fig. 1(b).. All these problems. are resolved by mtroducmﬁ)Ort can be expressed in the form
cross couplings between nonadjacent resonators, as described

in the pioneering works of Rhodes [5], Atia and Williams [6], 1

[7], Pfitzenmaier [8], [9], Bell [10], Cameron [11], and Rhodes S21(s)S21(~s) = 1+ K(s)K(—s) @)

and Cameron [12]. In these papers, it was demonstrated that

the fully cross-coupled (FCC) structure shown in Fig. 1(c) camhereK(s) is termed as the characteristic function of the filter
readily satisfy linear phase and/or high-selectivity requiremertsfined as

with the diagonal cross couplings arising when the amplitude 9

response is asymmetric. The succeeding research efforts are K(s)K(—s)= EQM = 42 fQ(S)_ )
concentrated on the development of special techniques and tools p($)p(=3) P*(s)

for syntheS|.s of SUCh.FCC filters [13]_[2.1]' Since gac_:h of thgis termed as the passband ripple facfgk) andp(s) are the
cross couplings contribute to all of the finite transmission zer

¥en or odd polynomials with real coefficients, which are related
(FTZs), their tuning is problematic. Therefore, as a transiti 4 '

: ) ) . : h other th h the Feldtkell ti
between direct-coupled filters and FCC filters, Pfltzenma|er[% each other through the Feldiketler equation

introduced low-pass prototypes leading to structures formed by oy _ _

cascading four-resonator [cascaded quadruplet (CQ)] blocks csye(=s) = H(s)f(=8) + pls)p(=s) ®)
for realizing eithew-axis(s; = +o;) Or jw-axis(s; = +jwi) with ¢(s) being a strictly Hurwitz polynomial. For typical
TZs and six-resonator blocks for realizing either a complegquiripple or maximally flat bandpass filteys(;s) and f(s) are
conjugate quadruplet of TZs = +o0; £ jwg Or tWO jw-axiS  of the form

TZss; = £jw; andsy = *jwy, as described in Fig. 1(d). Due

to the close correspondence between cross-coupled blocks and p(s) = s H (32 + %2) H [(3 +o1)? + w,ﬂ

the TZs, tuning of TZs is easier in these structures compared

to the FCC filters. Levy [13] then introduced CQ filters [see X [(8 — o)’ + w,ﬂ
Fig. 1(e)]. Both Pfitzenmaier's and Levy’s approaches lead to B 5 5 4
symmetric amplitude response, as their approaches are based on () = H (5" +wr) )

low-pass prototypes. Next, coupled triplets are introduced for
the realization of singlgw-axis TZs for asymmetric amplitude and, hence,
response [14], [17], [19]-[21], leading to cascaded triplet (CTk(S) K(—s)
filters [see Fig. 1(f)]. Eventually these contributions led to the 5
conclusion thatV-resonator blocks can be cascaded, as shown— 4.2 F(s)
in Fig. 1(g), for shaping both amplitude and phase responses of P?(s)
the filters, as alternatives to the FCC filters. In this paper, the 11 (52+w3)2
cascaded block approach of Pfitzenmaier will be generalized™ N p)
for direct synthesis of bandpass filters by placement of Tzs  **° IT1(s*+w})"II [(8+0k)2+wﬂ [(S—ffk)“rw;ﬂ
instead of using low-pass prototypes. This approach avoids (5)
limitations due to the LP-to-BP mapping functions, thus
leading to more general structures, which have extra flexibilityheren is the number of TZs at = 0,w;’'s andw,’s are
for response shaping, like complex TZ CQ sections without= jw-axis TZs and reflection zeros (RZs), respectively. The
diagonal cross-couplings for asymmetric amplitude respons#srd factor inp(s) is formed by the complex conjugate quadru-
The approach is based on the classical cascade synthplits of TZss;, = +o;, + jwi. The degree difference between
technique followed by circuit transformations for conversion af(s) andp(s) sets the number of TZs at= cc. In typical syn-
some proper sections of the resulting structure into CT, CQ, thiesis problems, one can foré&s) K (—s) to have equiripple
any otherN-tuplet blocks. or maximally flat passband amplitude response by specifying
Along this line, extraction of complex TZs formed a barriethe TZs only, in which case, RZs are automatically set. That
because, in the classical approach, they are extracted as grf(s) can be recognized as the numeratoridfs) K (—s).
lington-D sections, which are not suitable for easy handlingnowingp(s) andf(s), the polynomiak(s)e(—s) can be found
[4]. This problem is resolved by developing a novel approadtom the Feldtkeller equation from whicl{s) is formed using
in which complex TZs are extracted as fourth-order sectiortbe left half-plane roots of(s)e(—s) = 0. After ¢(s), f(s), and
which can readily be converted into CQ sections. This techniqués) are obtained, one can form any one of the two-port param-
is described in Section II, together with a revision of formulatioaters of the circuit, likes, Z, Y, or ABCD for element extrac-
of transfer functions with TZ placement in the transformed fraion. However, due to severe ill conditioning, finding the roots
guency domain. In Section Ill, conversion of properly extracteaf f(s)f(—s) = 0 ande(s)e(—s) = 0 are problematic. Such
circuit sections into different cross-coupled topologies will baccuracy problems are reduced significantly if the whole syn-
described qualitatively. Design examples will be given in Sethesis is carried out in the transformed frequency domain [2],
tions IV and V. [3], as summarized below.

2
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A. Formulation of Impedance Functions in Transformed L2 G2 Cst Lsr

Domain -~ —f

. . % L1

The following frequency transformation maps the passband c1

: . . . . L1, C1 -
of bandpass filters on the= jw-axis onto the whole imaginary i 2 é L2
axis of the transformed domain [2], [3]: Csh_| Lsh

, & ‘HU;%Q (@ (b)
2= ——2== Re(2) >0, for BPF (6) Fig. 2. Complex TZ sections.

2 2
S5+ Wo1

wherew,, andw,, are the passband edge frequencies. ThisUsing these polar form3/(z)/V(—z) can be written as
transformation separates the zeros clustered in and near the 1 w2y ) )
passband, easing numerical accuracy problems. Under this _V(z) _ H (Zi +2) H 27 +2Xiz+ X7 +Y]

transformation, a complex TZ quadruplet = +o; + jw; is V(—z) 3(Zi—=2) 1222 —2Xiz + X2+Y2
mapped onto the = = + jy plane asZ; = X; + jY; where nl na
— 2; 2X
0 = e e
X, = X§+YOQCOS§ £[1 £[1
6 = 2o 222X
Y; = /X2 4+ Y2sin - e= e
2 = Fe2x (12)

(l—i—af—wf)(a —|—0 — W )+4wz,a

Xo = wherey andy are defined as
(a2 +o?— wf) + dwlo? i X
v 2wiai(a2 — 1) 7= Z’Vi andX = ZXi- (13)
0 =
(a2 + 02 — wQ) + dwlo? Using (12) in (10), we get the form
LY, _
6 =tan™t =2 (7) K(EHK(2)
’ n Zz
The mapped forms of = 0, 0o, jw-axis ands-axis TZs can > 11 cosh™ <T>
be found as special cases of (7). Denoting the transformed ver— .2 .,¢,2 VZi=2
sions of the polynomialg'(s) andp(s) by F'(»?) and P(2?), -
respectively, the transformed version &f(s)K(—s) can be +YiZ, cos /G 72 _4X2:2
written as (12)
2N\T( .2
K(z2)f(22) - F(Z )F(7 ) g) Which is equiripple in passband and have the specified TZs.

P(22)P(2%) AfterformmgK( 2)K(z)?, the polynomiald”(z2), P(»%) and

E be det d the cl I hes [3].
Consider the polynomidl (=) defined in terms of the trans- (%) can be determined using the classical approaches [3]

formed versions of the TZ&; as B. Element-Extraction Procedure

nl n2/2 ) ) ) Element extractions can be carried out fromp- andy,; -pa-

V) =][Zi+2» [] (*+2Xiz+ X7 +Y?) (9 rameters of the two-port

i=1 =1

i . . . . Odd %)) 4+ Odd
where the first term is due to, jw-axis TZs, including those 1Ry = E (E(72)) = ( 7 ) (15)
ats = 0 ands = oo, and the second term is due to the com- ven(E(z?)) ¥ Even(F(z?))
plex TZs withn, being the total degree. Since complex TZs are z11 _ Odd(E (72)) + Odd(#/( )) (16)
placed as quadruplese andn./2 are always even. Consider R, Even(E(z?)) + Even(F(22))

the following function formed by’ (z) andV(—z): where the upper and lower signs refer to symmetric and an-

=/ o 51 Vi(z) V(—2) timetric circuits, respectively. In cascade synthesis, each ex-
K(*)K(2*) = ¢ 1 1+ V(i—2) 1+ Viz) ) (10) tracted element or circuit section realizes a certain TZ. A fi-
i i nite TZ is realized by shifting a zero either from= 0 or
Equiripple property of this function can readily be proven bfrom s = oo. Complex TZs are traditionally extracted as Dar-
using complex algebra. Let lington-D sections, which are rather complicated structures for
realization [4]. One novelty of this paper is that complex TZs are
~; = cosh™! Zi extracted either as a series or shunt fourth-order section having
’ NI some negative elements, as shown in Fig. 2(a), obtained from
2 2 (15), or Fig. 2(b), obtained from (16). This is possible by shifting
_ < |22 + 12| ) > ome
x; = cosh zeros at boths = 0 ands = oo simultaneously to create the
V(2 +]Zi7)? - 4X722 complex TZ at the desired location. That is, the impedance or
o, 42Xz 4+ X7 +Y]
(Zi—2)  © 22X+ X2+ 17

the admittance functions shown in (15) or (16) must have zeros
at boths = 0 ands = oc.

=™, (11)
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The procedure can be summarized as follows. Denoting the Nzero=1, Ninf=3 £oupled resonatar forms Neero=3, Ninf=1

complex TZ bysg = £o9 £ jwo, Which corresponds t#, = x M @ Z pzw
+Xo £ 7Y5 in the z-domain, extraction of the shunt elements —|—I T TI % ﬁ g %; ! % TI
Lg, andCgy, of Fig. 2(a) leads to the relation Norton p——

Y1(2)le=z, = Yoc(2)|:=2, + Y2(2)|:=2z, @

whereY; (=) is the original input admittance and(>) is the
admittance of the remaining circuit after removal of the pair
L,—Cyy,. The remaining impedancBs(z) = 1/Ya(z) will
have a pole akl, = +X, £ jYo, which can be extracted as
a series arm fourth-order section whose impedafige) can

be expressed in terms of four unknowhs, Cy, Lo, Cs in the
z-domain as

(22 — V22 — 11 — o222

17)

1 jw-axis or o-axis TZ

(Inductwe prototype )
with Nzero=1, Minf=3
F'IZ oo ?

(“)
NDrUJn

T ﬁa @@®
1 jwe-axis or o-axis T2 CT SECTION

with Nzero=3, Ninf=1

Zqy(z) = 2 oz FIZ z @
(o3 = i + 0" + 4303 e L
2 92 >l I—“J J_ ==
<1 —a?2? 1 1 ) VT e [T
z2—1 Cl L,CyCy Nolrton
. (18 Capaciti
% (2 = Zo1)(z — Zo2)(% — Zo3)(2 — Zoa) (18) (ka(':;c'twe prototype)
In order to have the complex TZ at the desired location, the
fourth-order section element values should satisfy the following I s [ TR )_(4“}
equations: _,ﬁ LDD—‘ _Hw CQ section
1 11 _ a(oi - ) 7T T _Qi 3 .
LyCy ' LiCy LyCy ) 70~ %0 o 2 s 4 N E 1 T
; — (52 2y2 19 Eé_“_—l:‘_& Lﬂ—J L(I—‘_HT —Erf -
= (Uo + wo) . ( ) ‘[l_, ‘|'_'|_f —Elj J— ) 7
LyCo L1 Cy n J /__T)__//L N
On the other handZ.(z) andZ,(~) are related as " 2 3 4 T 3l
O o bdn = Ly F
Zs(2) (7 = Zo1)(z = Zo2)(z — Zo3)(# — Zow)] 2=z, T - o
= Zy(2) [(z=Zo1) (2= Zo2) (2= Zos) (2 = Zoa)| | .=z, (20)

Solving (17)—(20), the unknownk, Lo, Cy, and C> can be Fig. 3. Suggested approaches for extraction of TZs. (&) At0, s = oo in

found. The shunt fourth-order section of Fig. 2(b) can be efoups. (b) Singlgw-axis oro-axis TZs in CT form (together Wit =
Nipr = 30r Nyero = 1) (c) Realization of a complex TZ quadruplet =
tracted in the same way, but by starting from (16). In both fourtlﬂ:o + jw or two jw-axis TZss, = =+jw; as a CQ section (together with

order sections, the elemertg andC; come out to be negative. N.c.o = 1, Ning = 3 0f Noero = 3, Nine = 1).

The negative element problems will be resolved after conver-
sion into a cross-coupled form.

The same formulation can be used to realize a pgit.ehxis
TZs s; = +jw; andsy = +jwy, resulting in the same circuit,
but with all positive element values. Single-axis ands-axis
TZs can be extracted through the same formulation, as speciaE)
cases by placing either; = 0 or w; = 0, leading to the well-
known Brune and Darlington-C sections.

Typical coupled resonator filters can be realized by extracting
the TZs as cascaded blocks as follows.

1) TZs ats = 0 ands = oo can be extracted as series
and shunt inductors or capacitors, as shown in Fig. 3(a),
in groups of N oo + Nir = Even Integer. Fig. 3(a)
shows the cases WitN,¢;o = 1, Njnr = 3 and Nyep0 =
3, Nin¢e = 1. In the remainder of this paper, the shorthand
notation N (1, 3) and N(3,1) will be used to denote the
TZ pairSNzero = 17Ninf =3 andNeo = 37Ninf =1,
respectively, as they will be referred to frequently.

CONVERSIONINTO CROSSCOUPLED RESONATORFORMS

The coupled resonator form can be obtained by appli-
cation of the Norton transformation to the series element.
The Norton transformer can be used to adjust the element
values, such as equating shunt inductors or capacitors.
A jw-axis TZ can be extracted as a Brune section
(series arm paralleLC), while a o-axis TZ can be
extracted as a Darlington-C section (series arm parallel
LC with negative capacitor) by zero shifting. However, if
cross-coupling is intended, thenja-axis oro-axis TZ
can also be extracted as part of a sixth-order circuit block
with either N(1,3) or N(3,1), as shown in Fig. 3(b).

In these circuits, bothw-axis ands-axis TZs appear as

a series arm paralldlC, with a capacitor ofr-axis TZ
being negative. The resulting circuit is then converted
into a direct-coupled resonator form by applying Norton
transformations to both series elements. The whole
circuit is then converted into a CT section by applying
row—column operations applied to the admittance matrix
of the direct-coupled resonator circuit, as described in
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3)

4)
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[14] and [19]. Row—column operations target elimination Lo 2 a3 4 S

of unwanted couplings, reduction &fC-type coupling {}—“_% l—H—[% L(Q{} LHJ$

into simpleL-or C-type coupling, and introduction of the I

desired coupling, resulting in several distinct solutions. g2 [ ¥ih - o et p ()

In the resulting CT forms, coupling element types and ., "‘e

values depend on both the location of the TZ withrespec  _1 2 3 s p. e °
to the passband and also 80, and Ny;. %} —”‘{) MQ{}
As it's shown in the previous section, a complex TZ )

quadruplets; = +a; & jw; can be extracted in the form 177 quadiuplet s= £+ jw, and 1 jw-axis TZ
of a fourth-order section having some negative element: with Nzero=1, Ninf=3 or Nzero=3, Ninf=1
by shifting zeros from botk = 0 ands = oc. The neg-

ative element problem can be solved only if the complex @
TZ is extracted as part of a cross-coupled quadruplet _1 2 3 4 5 &
This is described in Fig. 3(c). In this technique, the y% M,J%LM% L“J% M,J%
complex TZ is extracted as part of an eighth-order cir-

cuit block with eitherN(1,3) or N(3,1). The circuit 4 jw-axis TZ's with ‘ N\
section is then converted into direct-coupled resonato; "Me&ro=1; Ninf=3 or Nzero=3, Ninf=1

form by Norton transformations and then converted into or

a CQ section by applying row—column operations on
the 4 x 4 admittance matrix of the direct-coupled res-
onator circuit. As in the CT case, more than one solution
is possible [20]. Experiments have shown that a good
delay flatness and widest flat delay bandwidth can be
obtained ifo; = (wp2 — wp1)/2 and w; = wg. Here,
wp1,2 are the passband edge frequencies @ands the (b)

geometric center of passband. Theseandw; values Fig. 4. Five- and six-resonator cross-coupled blocks. (a) Quintuplets.
also lead to a low diagonal cross coupling, which caf) Septuplets.

be eliminated by tuning; to a critical frequency about

wo. This critical frequency and coupling element types 5) The same approach can also be applied to form higher
(inductive or capacitive) depend on the numbers of TZs ~ 4rder cross-coupled modules to realize more than two

atf =0andf = oo, as well as on the numbers and  ;,_axis or complex TZs as a singl§-tuplet. Fig. 4(a)

2 TZ quadruplets s;=to;iw; , 5= 20, tjw
with Nzero=1, Ninf=3 or Nzero=3, Ninf=1

positions ofjw-axis FTZs. The nature of diagonal cou- shows formation of a five-resonator block called a “quin-
pling (inductive or capacitive) changes above and below  ypjet.” It is extracted as a degree-10 circuit section with
this critical frequency. The ability to eliminate diagonal eitherN(1,3) or N(3,1). A quintuplet can realize either
coupling is a feature of direct placement of the com-  ihreeji-axis FTZs or a complex TZ and a single-axis

plex TZs. This is not possible in the classical LP-t0-BP  finjte TZ. Fig. 4(b) shows the formation of a six-resonator
mapping approaches where a CQ section realizing &  pjock called a “septuplet.” It is extracted as a degree-12
complex TZ is mapped from the-axis TZ of the LP circuit section with eithetV(1, 3) or N(3,1). A septuplet
prototype [9]. In such filters, di.agonal couplings cannot  can realize either foujw-axis FTZs or two complex TZs.

be eliminated unless thgw-axis TZs are symmetric.  conyersion from direct-coupled forms to quintuplet or
This is because only the; components of the complex septyplet forms is carried out again by row—column operations
TZ can be adjusted by tuning theaxis TZ of the LP 5ppjied on admittance matrices. However, matrix algebra gets
prototype. This feature may be an advantage of the dkgious as the number of resonators gets higher. Therefore,
rect placement of complex TZs described in this papeg_yplets of higher degree may be easier to handle with
which allows tuning of botlw; andw; for both response he approaches described in [15]-[18], which involve both
shaping and elimination of diagonal cross-coupling OJnaIyticaI tools and optimization.

the complex CQ sections. . _ In summary, one can form CT, CQ, or mixed CT-CQ-
CQ sections may also be used to realize jweaxis TZs  quintuplet-septuplet filters by extracting the relevant circuit
si = Fjw; ands, = +jwk simultaneously, as shownpocks in any order and then converting them id¥etuplet

in Fig. 3(c). The twojw-axis TZs may be extracted informs.

different orders in a circuit block with eithe¥ (1, 3) or It should be noted that eacN-tuplet requires a total of at
N(3,1). The twojw-axis TZs may then be combined tojeast four TZs ats = 0 ands = oo. Thus, a singleV-tu-

form a single fourth-order section. The row—column opeplet (FCC) filter with N5 resonators will have the maximum
ations can be applied on any one of the three structuregi@ssible number of FTZs &Ny — 4. All other filters formed
get the CQ form. The diagonal cross-coupling can disapy cascading severaV-tuplets with the same number of res-
pear only by locating the twgw-axis TZs symmetrically onators will have fewer FTZs because ed€huplet section
about the passband. needsV,ero+ Ninr = 4. The difference betweeN, e, +NVing Of
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a single and a multiplé/-tuplet filter of the same degree reflects zero zera /%e";z—— joraxis TZ-1 IF Inf 2et0 jweaxs TZ-2
itself as limitations on amplitude or phase response as follows Y il LIk
» When highest skirt selectivity is required, the sinfyletu- (E:‘ ﬁ L_Em_l IRalat J_ ol [HF]7 H}
plet version (FCC) is advantageous because it can colle [ T 1 1 i 1 T
all of its 2N — 4 degrees agw-axis FTZs near the band @)
edges at the expense of lower minimum stopband inser- a
tion loss. A cascadel -tuplet filter can locate fewer FTZs il s 17

1 I 2 4 6
there, but minimum stopband loss will be higher. %;: %} I {} \—[ﬂ]—' f} "”"{) T L*H%} l#
 Similarly, in FCC filters, all th Nz — 4 degrees can be T le

realized ag2Ngr — 4)/4 complex TZs to get the widest (b)
flat delay bandwidth at the expense of less selectivity while €O o conplex 12 S—

I r number of complex TZ n realized in - ~—
a lesser number of comple s can be realized in cas . /_”_\ —

cadedV -tuplet filters with the same number of resonators, . 5 5 4 . - .
leading to narrower flat delay bandwidth, but having higher J:‘: L al f} s s

selectivity. Thus, selectivity, flat delay bandwidth, and (r -H_,i T {) le Fj $ ¢
minimum stopband loss level need to be compromised.

L1=0.29461 L2=0.26104 L3=0.27061 L4=0.2551 L5=0.21859 L6=0.20601 L7=0.3170%
C1=137.664 (C2=150.665 C3=150.258 C4=159.03 C5=187.107 C6=197.03% C?=185.821
C12=3.2159 L23=33345 L[34=18.352 L45=16.324 L56=14.8396 LA7=10.931

IV. THEORETICAL DESIGN EXAMPLE C14=0.6998 L47= 897.795 L57= 46.2184
In this section, an example will be presented involving two ©
CQ sections, one to create twoe-axis TZs in the upper stop- Ins. Loss-Ret. Loss Delay
band and the other to create a complex TZ to flatten the delay. ’ Wmnm’\f ’
Filter specifications are as follows: A
passband edges 790-810 MHz; s = <
passband ripple 0.1 dB; B TR
3TZs at bothf = 0 and f = oo; - ' U I/ \f/ 200
two finite jw-axis TZs at 840 and 860 MHz; 40 MH &70
one complex TZ att10+5799.7 MHz. ()

The TZs are extracted in the order shown in Fig. 5(a). N

Fig. 5(b) shows the coupled resonator form after Norton o N // /_”_\\

transformations. Using matrix operations, the filter is then = Y 2 3 2Ly €

converted into CQ form, as given in Fig. 5(c). 73 {) -H“ -'f“; -’31 e %}
The complex TZ is selected in accordance with the constraint [ T T Fj

0; = (wp2 —wp1)/2 andw; =~ wo andw; is tuned until the diag- (e)

onal coupling element of the complex CQ section is eliminated. |

Since the twgw-axis TZs are on the same side of the passband

4
(unsymmetrical TZs), the diagonal coupling of the CQ section _é's I} ——i > 3 :
corresponding to these TZs cannot be eliminated. Response (§= %} {} %} {} %} {) ¢
®

the filter is shown in Fig. 5(d). It is seen that the delay is flat-
tened within 50% of the passband with only one complex TZ

quadru_plet. Fig. 5(e)_(f) shows two other solutions obtained E}é 5. Development of the CQ filter and other possible solutions.
extracting the TZs in different orders.

transformed into the direct-coupled shunt resonator form with
V. PRACTICAL REALIZATION OF A CT HLTER two notch-type series arms creating the two desired TZs at finite

The practical value of the design procedure will be demoffeduencies, shqwn in Fig. 6(b). The relevant circ_uit sections are
strated by an example in the form of a seven-pole bandpass fiff¢n converted into CT forms. The cross-couplings are repre-

in the 1800-MHz frequency range containing two CTs. Filte}ented by series inductance between nonadjacent resonators 1-3
specifications are as follows: and 5-7, as shown in Fig. 6(c). Here, the element values given

passband edges 1703.4-1787.3 MHz: can provide coupled TEM-resonator realization parameter data,
~20 dB: ' namely, coupling coefficient matrix and loadéds. Fig. 6(d)
' shows the comparison between theoretical prediction and mea-

number of resonators seven (degrée= 14); ! : ) . :
o . sured performance. The filter was realized in quasi-combline
upper stopband selectivity >65 dB for f > 1805 MHz. . . ;
: o : . .._form. The coupling aperture dimensions were found by an
For the final realization, as an all-inductively coupled f'lteriterative rocess using HFS8lectromagnetic (EM) simulation
the transfer function will need to have one TZfat= 0. The P 9 g

with extraction of filter parameters frot-parameter data. The

high selectivity in the upper stopband is provided by placing tWoarameters of an equivalent circuit for the realized filter were

jw-axis FTZs close to the upper passband edge. With four de- ; . . L .
grees coming from the FTZs, this leaves us with nine TZs at inS-und by an extraction process involving circuit analysis and

finity. The extracted initial network is shownin Fig. 6(a). Itisthen HFSS version 5.6, Agilent Technologies, Palo Alto, CA.

Passband return loss
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